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1 Introduction

Macroeconomic news comes out in a lumpy manner via scheduled news announce-

ments, especially the monthly employment report that includes both nonfarm pay-

rolls and the unemployment rate. These announcements are important for all asset

prices, but especially for bond yields (Andersen, Bollerslev, Diebold, and Vega, 2007).

Nevertheless, term structure models mostly assume that the factors driving the term

structure of interest rates are continuous diffusions, and so that news comes out con-

tinuously. Some models allow for jumps, but these are typically jumps at random

times, following a Poisson arrival process (Das, 2002; Duffie, 2001; Feldhutter, Schnei-

der, and Trolle, 2008; Jiang and Yan, 2009; Johannes, 2004). Researchers using this

approach find that many—though not all—of the jumps occur at times of news an-

nouncements (Andersen, Bollerslev, and Diebold, 2007). But, if we are thinking of

the jumps as reflecting scheduled news announcements, then they are perhaps better

viewed as jumps at deterministic times but of random magnitudes.1 In this perspec-

tive, depending on how big the surprise component of a particular announcement is,

the jump may be big or small. But every announcement leads to some jump, and its

timing is known ex ante.

Further impetus for taking a closer look at the role of deterministic jumps in term

structure models is provided by recent studies that document differences in risk-return

characteristics over announcement versus non-announcement periods. In particular,

Faust and Wright (2008) find that excess returns in bond futures market accrue

at times of scheduled data announcements, suggesting that the well-known failure

of expectations hypothesis is mainly due to announcement reactions. Analogous

phenomena occur in other asset markets as well: Mueller, Tahbaz-Salehi, and Vedolin

1Throughout, when we refer to jumps of random size/magnitude, the sign of the jumps is random
too: they can be either positive or negative.
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(2015) find that FOMC announcement days contribute in large part to the failure of

the UIP (uncovered interest rate parity) hypothesis in foreign exchange markets,

and Lucca and Moench (2015) and Savor and Wilson (2013) document interesting

equity market risk premium patterns associated with scheduled announcements.

Though Faust and Wright (2008) considered different bond maturities separately

in a regression setup, it is useful to build dynamic term structure models that can

parsimoniously capture this effect for the entire yield curve. If investors perceive

macro announcements like the employment report as major risk events, then this

model can tell us the implications of these risk events for the pricing of bonds and

the dynamics of bond yields, and bond risk premia and term premia. In this paper,

we develop such a model.

Our model can be viewed as an extension of standard affine Gaussian model to the

case of deterministic jumps, with two key features: (1) all elements of the state vector

are allowed to jump (with a general correlation structure), and (2) the pricing kernel

also jumps, i.e., jump risks are priced, and jump risk premia are state-dependent.

As in standard affine models like Dai and Singleton (2000) and Duffee (2002), the

state variables are all latent factors, but we think of them as being driven in part by

macroeconomic data. Changes in the state variables that are driven by news about

the economy might consequently have different implications for future expected rates

and term premia than other shifts in the state variables. Our model allows for this

possibility, while a conventional model with latent factors that follow a diffusion

does not. We show that the model has a closed-form affine representation for yields,

although one in which the loadings have a deterministic dependence on time. After

discussing the theoretical properties of the model, we fit the model to daily data on

the term structure of US Treasury yields, assuming that there are jumps on the days

of employment reports.
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Our paper is related to three strands of research on the effects of scheduled

announcements on bond yields. One is a small literature on term structure models

with deterministic jumps. The best known examples are Piazzesi (2001, 2005),

but these papers’ focus is on jumps in the target fed funds rate, and jump risk

is not priced.2 Another strand consists of papers that study news announcement

effects using term structure models but without explicit modeling of jumps or jump

risk premia, including Fleming and Remolona (1999), Hördahl, Remolona, and

Valente (2015) and Bauer (2015). The term structure models in these studies are

derived under the implicit assumption that data generating process is the same for

announcement and non-announcement periods. A third strand, which includes studies

by Beber and Brandt (2006, 2009), is a literature on studying the implications of

scheduled macro announcements for bond option prices. The present paper is the first

to specify and estimate a multifactor term structure model for bond yields allowing

for deterministic jumps in the entire state vector and allowing for state-dependent

jump risk premia. Our model gives implications for bond risk premia (expected excess

returns) on jump days (employment report days) and on non-jump days that are not

available in existing work. These implications are our main focus.

Our key empirical results are as follows:

i We find that bond risk premia implied by our flexibly specified jump model are

notably bigger in absolute value on jump days than on non-jump days. The

employment report day bond risk premia are also bigger in absolute value than

those that we obtain from estimation of a homogeneous (no-jump) model. These

results are consistent with aforementioned findings of Faust and Wright (2008).

2Piazzesi (2005) considers Poisson jumps in the federal funds target rate alone, where the jump
intensity is high and state-dependent within windows bracketing scheduled FOMC meeting events,
and low at other times. The jump intensity is nonzero at other times to allow for the small probability
of an unscheduled FOMC move. Piazzesi (2001) considers a model that also includes state variables
corresponding to nonfarm payroll employment and CPI, that also jump at deterministic times.
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ii Our model captures the hump shape of the term structure of yield volatility

on employment report days (low at the short maturities and peaking at about

two-year maturity) documented in Fleming and Remolona (1999) and Piazzesi

(2005). We also examine the model-implied term structure of the volatility

of the changes in expectations and term premium components of yields on

employment report days, and find that the term structure of the volatility due

to the expectations component has a different shape for jump versus non-jump

(diffusion) movements in yields.

iii A restricted version of jump model (with jumps in the short rate only) produces

implied bond risk premia and a term structure of employment-day volatilities

that are very different from those from the flexible model.

iv A time-homogeneous term structure model (standard affine Gaussian model)

produces bond risk premia for daily holding periods that differ notably from

the flexibly specified jump model, but bond risk premia for longer holding

periods are more similar between the two models. These results suggest that

time-homogeneous models, which are simpler to implement, may still give

sensible results in some applications.

The plan for the remainder of this paper is as follows. In section 2, we report some

empirical facts about the behavior of yields on announcement and non-announcement

days. In section 3, we describe the model with jumps at deterministic times, derive an

expression for bond prices in the model, and examine its theoretical implications. In

section 4, we discuss the methodology for model estimation, and section 5 discusses

empirical results. Section 6 concludes.
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2 Yields and Macro Announcements

First, we briefly examine some empirical facts about bond yields and their relationship

to macroeconomic announcements that our model is designed to capture. Table 1

shows the standard deviation of three-month, two-year and ten-year zero-coupon US

Treasury daily yield changes on the days of certain macro announcements, and on

non-announcement days.3 We see that employment report days show substantially

higher volatility of interest rates than non-announcement days, or indeed days of

any other types of macroeconomic announcements, consistent with earlier studies

(Andersen, Bollerslev, Diebold, and Vega, 2007; Balduzzi, Elton, and Green, 2001;

Fleming and Remolona, 1997). The difference between the volatility on employment

report days and non-announcement days is overwhelmingly statistically significant.

That market participants are aware of these patterns can be seen clearly from data

on very-short-maturity options. Starting in 2011, the Chicago Mercantile Exchange

has traded options on five-, ten- and thirty-year Treasury futures that expire each

Friday afternoon.4 As of the Thursday close, these are options with one day left

to maturity. We obtained settlement prices on these options on Thursdays, and

computed the Black implied volatility of the call option that is closest to being

at-the-money. Employment reports are nearly always released on Fridays. We

computed the average options implied volatility on the Thursdays that preceded

employment reports and on all other Thursdays. The results are reported in Table 2.

The one-day Treasury implied volatility is nearly twice as big ahead of employment

reports than on other Thursdays. This confirms that the market anticipates jumps

3The 2-year and 10-year yields are from the dataset of Gürkaynak, Sack, and Wright (2007),
while the 3-month yield is the 3-month T-bill yield. By non-announcement days, we mean days that
have no employment report, CPI, durable goods, FOMC, GDP, PPI or retail sales announcement.

4Though new, these very short-term Treasury options have become reasonably liquid. The
May 2016 CME options review reported that the average daily trading volume, aggregating across
maturities, is 87,000 contracts.
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associated with employment report announcements, as earlier found by Beber and

Brandt (2006, 2009), using longer-maturity options.

Figure 1 plots the standard deviation of yield changes on employment report

and non-announcement days against the maturity. On non-announcement days,

the volatility curve is fairly flat in maturity, reflecting the well-known fact that

the vast majority of yield curve shifts are level shifts (Litterman and Scheinkman,

1991). But on employment-report days, the level of volatility is higher, but is also

hump-shaped in maturity—the most volatile yields on employment report release

days are intermediate-maturity yields, and the volatility is notably lower at the short

end of the yield curve (such as three months). This was earlier found by Fleming

and Remolona (1999) and Piazzesi (2001). It can also be seen in Table 1 for each

of the announcement types separately. This is an empirical fact that a standard

diffusive term structure model cannot capture. It represents the effects of news today

on expectations of future monetary policy, and also on risk premia. A more stark way

of documenting this stylized fact is to look at the volatility in yield changes caused

by employment report announcements, assuming that the only difference between

employment report and non-announcement days is the existence of the employment

report news5. We also show this in Figure 1. The jump-induced volatility has a

particularly pronounced hump shape.

Apart from the volatility associated with announcements, risk-return character-

istics also differ over announcement versus non-announcement periods. Faust and

Wright (2008) regress excess returns in bond futures market over both announcement

and non-announcement windows onto yield curve factors, and find that most of the

5If σm,A and σm,NA are the standard deviations of bond yields at maturity m on employment
report and non-announcement days, respectively, then we define the standard deviation of yields

owing to the employment report as
√
σ2
m,A − σ2

m,NA.
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evidence for time-varying predictability of excess bond returns occurs over the an-

nouncement windows. This implies that the well-known failure of the expectations

hypothesis is mainly due to announcement reactions.

3 Term structure model with jumps at known

times: Theory

3.1 The model

Our model specifies that xt is an n-dimensional latent state vector. Under the physical

measure, xt, follows the jump-diffusion:

dxt = K(θ − xt)dt+ ΣdWt + ξtdNt (3.1)

where Wt is an n-dimensional vector of independent standard Brownian motions, Nt

is a counting process with jumps at deterministic times t = Ti, i = 1, 2, 3, ... (dNt = 1

for t = Ti, 0 at other times), and ξTi is an n-dimensional vector of random jump

sizes.6

The random jump size vector, ξTi , is assumed to be normally distributed with a

state-dependent mean: ξTi ∼ N (µ(xTi−),Ω), where Ω = ΥΥ′, and µ(.) is an affine

function of the state vector right before the jump, i.e.,

µ(xt−) = γ + Γxt−. (3.2)

6For a nice pedagogical discussion of jumps at deterministic times, see Piazzesi (2009). Piazzesi
notes in Chapter 3.5.2 that jumps in deterministic times lead to bond yields that are nonstationary
(time-inhomogeneous).

7



The short-term interest rate is:

rt = ρ0 + ρ′xt. (3.3)

Assume that the pricing kernel is

dMt

Mt

= −rtdt− λ′tdWt + J(ξt, xt−)dNt (3.4)

J(ξt, xt−) = exp(−ψ′t−Υ−1(ξt − µ(xt−))− 1

2
ψ′t−ψt−)− 1, (3.5)

where λt = λ+ Λxt and ψt− = ψ + Ψxt−.

Under the risk-neutral measure, xt, follows the jump diffusion:

dxt = KQ(θQ − xt)dt+ ΣdWQ
t + ξQt dNt

where the jump size vector ξQTi has the distribution N (µQ(xTi−),Ω), µQ(xt−) =

γQ + ΓQxt−, KQ = K + ΣΛ, θQ = K−1
Q (Kθ − Σλ), γQ = γ −Υψ and ΓQ = Γ−ΥΨ.

Our model nests the standard (time-homogeneous) essentially affine term structure

model (model EA0(3) in the terminology of Duffee (2002)). Indeed, it can be viewed

as a natural generalization of the EA0(3) model to include deterministic jump effects

and risk premia associated with these jumps; our flexible affine specification of market

price of jump risk ψt (equation (3.5)) can be viewed as an analogue of the affine

specification of market price of diffusion risk in the EA0(3) model.

A key feature of our model is that it allows for jumps in all elements of the

state vector. While many existing term structure models with jumps have focused

on specifications in which only the short rate (or the target federal funds rate) has
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jumps,7 it is important to allow for jumps in other state variables. Indeed, the hump

shaped response pattern we have seen in Figure 1 suggests that, although a good

employment report may affect very short term rates, it can have a bigger impact on

expectations about future rate hikes.8 However, jumps in the expected path of short

rate are not the only possible source of jumps in bond yields. A significant part of

jumps in bond yields could come from jumps in term premia. This feature is also

incorporated into our model as jumps in the market price of risk.9

A few other remarks are in order. First, in this paper we do not model stochastic

volatility of yields. While the time-varying volatility of yields is well documented,

empirical studies such as Jones, Lamont, and Lumsdaine (1998) find that the volatility

associated with macroeconomic announcements effects are short-lived; therefore, our

model with homoskedastic yields during non-announcement periods and jumps at

announcements can still be expected to capture some essential features of the yield

curve response to data releases.

Second, we envision our model as capturing yield response to monthly employment

report. Other macroeconomic data announcements, such as retail sales, CPI, etc.,

also give rise movements in interest rates that can be thought of as jumps (Andersen,

Bollerslev, Diebold, and Vega, 2007). For these, we could in principle extend the

model to allow for jumps of multiple types, by introducing different kinds of jumps

corresponding to different types of announcements:

dxt = K(θ − xt)dt+ ΣdWt + ξAt dN
A
t + ξBt dN

B
t + ... (3.6)

7These include Das (2002), Johannes (2004), Jiang and Yan (2009) and Piazzesi (2005).
Exceptions include Piazzesi (2001) and Feldhutter, Schneider, and Trolle (2008).

8This “path shock” is in the same sense as in Gürkaynak, Sack, and Swanson (2005), who have
discussed the patterns of yield/futures curve responses to FOMC announcements.

9Fleming and Remolona (1999) explain the hump-shaped yield response pattern purely in terms
of changes in the expected path of the short rate (revisions in “central tendencies” in their model),
as they assume that term premia are constant.
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However, given the especially strong effects of employment report as discussed in

Section 2, it seems reasonable to first try to study the effects of employment report

as we do in this paper. Other scheduled announcement responses are in effect

approximated as a part of diffusion dynamics. We expect many of the key conclusions

of our model to be preserved in richer models.

3.2 Expression for bond prices

Let the time t price of a zero-coupon bond maturing at time T be P (t, T ). Then

P (t, T ) = EQ
t

(
exp(−

∫ T

t

rsds)

)
(3.7)

Proposition 1 provides an expression for this price.

Proposition 1. Suppose that between time t and T there are p jumps at T1, T2, ..., Tp,

and that the risk-neutral dynamics of state variables and the short rate are given by

equations (3.1) and (3.3), respectively. Then

P (t, T ) = exp(a(t, T ) + b(t, T )′xt) (3.8)

where

b(t, T ) = exp(−K ′Q(T1 − t))((I + Γ′Q)b1 +K−1′
Q ρ)−K−1′

Q ρ (3.9)

a(t, T ) = a1 + b′1γQ +
1

2
b′1Ωb1 + A(T1 − t; (I + Γ′Q)b1) (3.10)
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and10

ai−1 = ai + b′iγQ +
1

2
b′iΩbi + A(Ti − Ti−1; (I + Γ′Q)bi) (3.11)

bi−1 = B(Ti − Ti−1; (I + Γ′Q)bi) (3.12)

iterating backwards from the “initial” conditions

ap = A(T − Tp; 0n×1) (3.13)

bp = B(T − Tp; 0n×1), (3.14)

and A(τ ; η), B(τ ; η) given by

B(τ ; η) ≡ exp(−K ′Qτ)(η +K ′−1
Q ρ)−K ′−1

Q ρ (3.15)

A(τ ; η) ≡
∫ τ

0

[(KQθQ)′B(s; η) +
1

2
B(s; η)′ΣΣ′B(s; η)− ρ0]ds (3.16)

= (KQθQ)′
[∫ τ

0

exp(−K ′Qs)ds
]

(η +K ′−1
Q ρ)− (ρ0 + θ′Qρ)τ

+
1

2
(η +K ′−1

Q ρ)′
[∫ τ

0

exp(−KQs)ΣΣ′ exp(−K ′Qs)ds
]

(η +K ′−1
Q ρ)

−ρ′K−1
Q ΣΣ′

[∫ τ

0

exp(−K ′Qs)ds
]

(η +K ′−1
Q ρ)

−(η +K ′−1
Q ρ)′

[∫ τ

0

exp(−KQs)ds

]
ΣΣ′K ′−1

Q ρ+ τρ′K−1
Q ΣΣ′K ′−1

Q ρ.

The proofs of the propositions, including Proposition 1, are collected in the Ap-

pendix.11 Even with jumps, prices are an exponential affine function of the state

vector, and consequently yields are an affine function of the state vector, but the

10Throughout this paper, we define exp(A) = I +A+A2/2 +A3/6 + · · · for any square matrix A.
11Note that the integrals in (3.16) can be computed analytically. We have∫ τ

0
exp(−K ′Qs)ds = K ′−1Q (I − exp(−K ′Qτ)) and vec(

∫ τ
0

exp(−KQs)ΣΣ′ exp(−K ′Qs)ds) = ((I ⊗KQ)

+ (KQ ⊗ I))−1vec(ΣΣ′ − exp(−KQτ)ΣΣ′ exp(−K ′Qτ)).
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loadings depend not only on the time-to-maturity, but also on time itself.

When there is no state dependence in jumps (ΓQ = 0), the expressions for a(t, T )

and b(t, T ) are particularly simple. As shown in the Appendix, in this case:

a(t, T ) = ã(T−t) +
∑

t<Ti<T

(
− ρ′K−1

Q (I−e−KQ(T−Ti))γQ

+
1

2
ρ′K−1

Q (I − e−KQ(T−Ti))Ω(I − e−K′Q(T−Ti))K ′−1
Q ρ

)
, (3.17)

b(t, T ) = b̃(T − t), (3.18)

where ã and b̃ are factor loadings for the standard affine-Gaussian model (without

jumps), and the sum in equation (3.17) denotes summation over all Ti’s between t

and T . When ΓQ = 0, b(t, T ) is a continuous function of T − t (as can be seen from

equation (3.18)), thus the factor loading right after a jump, b(Ti, T ) and the factor

loading right before the jump, b(Ti−, T ) are the same.12 But in general (ΓQ 6= 0) they

differ.

3.3 Properties of the model

We now explore the theoretical implications of the model.

3.3.1 Yield curve: cross-section and dynamics

The bond pricing formulas derived above imply that the yield curve is continuous.

Using the law of iterated expectations:

P (t, Ti) = EQ
t (e−

∫ Ti
t rsds) = EQ

t (e−
∫ Ti−
t rsdsETi−(e−

∫ Ti
Ti−

rsds))

= EQ
t (e−

∫ Ti−
t rsds · 1) = P (t, Ti−). (3.19)

12Here and elsewhere in this paper, we denote Ti − 0+ by Ti−, and Ti + 0+ by Ti.
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and hence the yield curve is continuous as the maturity T approaches one of the jump

dates:

lim
T→Ti−

P (t, T ) = P (t, Ti). (3.20)

However, the yield curve has kinks at maturity points corresponding to deterministic

jump dates, as we show in proposition 2.

Proposition 2. The yield curve has a discontinuous first derivative at T = T1, T2, ...:

lim
T→Ti−

∂

∂T
P (t, T ) 6= ∂

∂T
P (t, Ti). (3.21)

The presence of kinks in the yield curve is theoretically interesting, though for realistic

parameter values the yield curves implied by the model still look smooth, which we

know to be the case empirically.

We now turn to the discussion of yield dynamics. In order to simplify the

exposition and the empirical analysis of the model, we assume that employment

reports are equally spaced (T2−T1 = T3−T2 = ... = 1/12 ≡ δ̄). Then the bond yield

at time t with remaining time-to-maturity τ can be represented as:

yτ,t = ay(τ ; δ(t)) + by(τ ; δ(t))′xt, (3.22)

where δ(t) = T1 − t is the time to the next jump (employment report), ay(τ ; δ(t)) ≡

−a(t, t+ τ)/τ and by(τ ; δ(t)) ≡ −b(t, t+ τ)/τ .

Equation (3.22) has the implication that, due to the time-dependence of ay and by,

the change in yield between time t and time t+ h, ∆y, is not exactly by(τ ; δ(t))′∆x.

Still, for small h, ∆y ≈ by(τ ; δ(t))′∆x, except when the interval [t, t + h] contains a

jump. Meanwhile, the yield change over an infinitessimal period containing the jump

13



at time Ti is given by:

∆y = (by + ∆by)
′(xTi− + ∆x)− b′yxTi− + ∆ay

= by(τ ; 0)′∆x+ ∆b′y∆x+ [∆b′yxTi− + ∆ay], (3.23)

where ∆ay = ay(τ ; δ̄) − ay(τ ; 0) and ∆by = by(τ ; δ̄) − by(τ ; 0). In addition to the

usual term (by(τ ; 0)′∆x), this expression now contains a ∆b′y∆x term, as well as the

term in square brackets which represents a predictable change in yields.13 Using

equations (A.3) and (A.4) in the Appendix, the jump discontinuity in by is given by

∆by = −Γ′Qby(τ ; δ̄). Therefore, if jump risk is not priced (ΓQ = 0n×n), then ∆by = 0.

But in general, ∆by is nonzero, and changes in bond yields at deterministic jumps

contain a state-dependent predictable component. This gives rise to distinct patterns

in bond risk premia, to which we now turn.

3.3.2 Bond risk premia and term premia

Consistent with the standard usage of the term, we refer to the expected excess return

on bonds as bond risk premia. The annualized bond risk premium at time t for a

holding period of h and a time-to-maturity of τ is given by:

ρτ,t,h =
1

h
Et

(
log(

P (t+ h, t+ τ)

P (t, t+ τ)
)− log(

1

P (t, t+ h)
)

)
=

1

h
[b(t+ h, t+ τ)Et(xt+h)− (b(t, t+ τ)− b(t, t+ h))xt

+a(t+ h, t+ τ)− a(t, t+ τ) + a(t, t+ h)]. (3.24)

13We are assuming here that γ = 0 and Γ = 0, so then ETi−(∆x) = 0. Otherwise, the first two
terms in equation (3.23) would also have a predictable part.
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Because Et(xt+h) is affine in xt, this expression is affine in xt. At non-jump times14:

d logP (t, T ) =
dP (t, T )

P (t, T )
− 1

2
‖b(t, T )′Σ‖2dt

=
[
rt + b(t, T )′Σ(λ+ Λxt)−

1

2
‖b(t, T )′Σ‖2

]
dt+ b(t, T )′ΣdWt. (3.25)

Meanwhile, the expected log return at jumps, ETi−(∆J logP ), is given by:

ETi−(logP (Ti, T ))− logP (Ti−, T ) = ETi−(logP (Ti, T ))− logEQ
Ti−(P (Ti, T ))

≈ ETi−(logP (Ti, T ))−EQ
Ti−(logP (Ti, T )) = b(Ti, T )′(µ(xTi−)− µQ(xTi−)), (3.26)

where we have used the result (A.2) from the Appendix in the first line. Thus,

neglecting the convexity term 1
2
‖b(t, T )′Σ‖2 in equation (3.25), for small h,

ρτ,t,h ≈

 %D(t, t+ τ), Ti /∈ [t, t+ h]

%D(t, t+ τ) + (1/h)%J(t, t+ τ), Ti ∈ [t, t+ h]
(3.27)

with

%D(t, T ) = b(t, T )′Σ(λ+ Λxt)

%J(t, T ) = b(t, T )′Υ(ψ + Ψxt).

Therefore, the bond risk premium ρτ,t,h fluctuates slowly, except on jump days where

it is enhanced by the (1/h)%J term.

Turning to term premia, we define the term premium for the τ -period bond yield

14This formula is obtained by applying Ito’s Lemma to P (t, T ) under both the P and Q measures,
and noting that the drift term for dP

P under the Q measure has to be equal to rtdt.
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at time t, TPτ,t in the conventional way as: 15

TPτ,t ≡ yτ,t − Eτ,t, (3.28)

where Eτ,t is the expectations component of the bond yield:

Eτ,t =
1

τ
Et

[∫ t+τ

t

rsds

]
. (3.29)

When jumps have a zero mean in the physical measure (γ = 0,Γ = 0), the expression

for Eτ,t is the same as in the model without jumps, i.e.,

Eτ,t = ρ0 + ρ′θ − 1

τ
ρ′K−1(I − e−τK)θ +

1

τ
ρ′K−1(I − e−τK)xt. (3.30)

4 Estimating the Model

4.1 Estimation approach

The model described in section 3 implies that yields are time-inhomogeneous affine

functions of the latent state vector. Treating observed yields as being contaminated

with small measurement error, the model can easily be estimated by maximum

likelihood on daily data via the Kalman filter.

15This defines the term premium as the deviation from the expectations hypothesis, and includes
the Jensen’s inequality effect in the term premium.
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Specifically, we have the following observation equation and state equation:

yτ,t = ay(τ ; δ(t)) + by(τ ; δ(t))′xt + eτ,t (4.1)

xt = xt−1 +K(θ − xt−1)∆t+ εt + ξt (4.2)

εt ∼ N (0n×1,ΣΣ′∆t), (4.3)

ξt ∼ N (0n×1,Ω) for t = T1, T2, ... (4.4)

The first equation is the same as equation (3.22), except that we have added a

measurement error eτ,t that is assumed to be i.i.d. over time and maturities. In

order to simplify the implementation, we assume that the time to next employment

report, δ(t), takes on 22 values only (approximately corresponding to the number of

trading days in a month), ranging between 0 and δ̄ = 1/12. In the state equation, ∆t

is one business day (1/250). We restrict the ξt vector to have zero mean in the physical

measure, as the more general version ξt ∼ N(γ + Γxt−1,Ω) becomes too unwieldy for

estimation (ξt is still allowed to have a non-zero mean under the risk-neutral measure).

Equation (4.4) implies that the conditional variance of xt has a deterministically

varying pattern: it is ΣΣ′∆t + Ω on announcement days (t = T1, T2, ...) and ΣΣ′∆t

on non-announcement days. We fit the model to daily data on 3-month, 6-month

and 1, 2, 4, 7 and 10-year zero-coupon US Treasury yields, using the dataset of

Gürkaynak, Sack, and Wright (2007) for maturities of one year or greater, and T-bill

yields for 3-month and 6-month maturities. The data span 1990-2007 inclusive. At

the zero lower bound, short- and even intermediate-term yields become insensitive

to news (Swanson and Williams, 2014), but our model does not incorporate the zero

lower bound. For this reason, we omit recent data from our estimation. In order to

help pin down the parameters related to physical dynamics, we augment our Kalman

filter based estimation with survey forecast data, as in Kim and Orphanides (2012).
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The survey forecast data are Blue Chip forecasts of three-month Treasury yields at

6 month and 12 month horizons, that are available monthly, and the long range

Blue Chip forecasts at the 5-10 year horizon that are available twice a year. When

observed, they are assumed to equal to the true expectations plus a zero-mean iid

measurement error.

4.2 Estimated specifications

As is standard in the literature, the number of factors, n, is set to 3. We first allow

for jumps in all elements of the state vector and adopt the following normalizations

for identification: we restrict ρ to be [0, 0, 1]′ , specify K as lower triangular and θ as

a vector of zeros, and let16

Σ =


c 0 0

0 c 0

Σ31 Σ32 Σ33

 .

We shall denote this specification as the “J-Full” model.

This specification looks somewhat different from the usual specification in which K

is lower-triangular, Σ is an identity matrix (or diagonal matrix of n free parameters),

and ρ is a vector of n free parameters (or vector of ones). We choose our normalization

to make the third element of the state vector directly interpretable as the short rate.17

In order to compare with a specification in which there is jump in the short

rate only, we also estimate a restricted model in which the Ω matrix is zero except

16c is a scale constant which we choose to be 0.01.
17No loss of generality is incurred here, since our specification can be obtained from the “usual”

specification by applying the invariant transformation xt = Lx̃t, where x̃t is the state vector in the

“usual” specification, xt is our specification, and L =

 1 0 0
0 1 0
ρ1 ρ2 ρ3

 .
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for Ω33. We shall denote this model as the “J-Short” model. Lastly, in order to

compare models with and without jumps, we also estimate the homogeneous model

(affine-Gaussian model), which shall refer to as the “No-Jump” model.

5 Empirical Results

The parameter estimates for the three specifications (J-Full, J-Short, No-Jump) are

given in Table 3. Figure 2 plots the by factor loadings against the time-to-maturity τ

for the J-Full and J-Short model. (To save space, we omit the graph for the No-Jump

model). Because the bys also depend on δ(t) (the time to the next jump), we plot

both by(τ ; 0) and by(τ ; δ̄), so that the range of by(·; δ) can be seen. Because x3 = rt in

our normalization, by(τ ; 0) → (0, 0, 1)′ as τ → 0. The difference between by(·; 0) and

by(·; δ̄) is visible, though it is quite small.

5.1 Term structure of volatilities

In examining the empirical content of the estimated models, we first consider their

implications regarding the term structure of volatilities. In our model, changes in

bond yields on non-announcement days come from the diffusive part of the state

variable dynamics; the diffusive contribution to the daily variance of yields is:18

var(∆Dy) ≈ by(τ ; δ̄)′ΣΣ′by(τ ; δ̄)∆t. (5.1)

On announcement days, in addition to the diffusion contribution, there is also the

jump contribution. As discussed in Section 3, the change in bond yield at jumps

contains a predictable component. It is, however, small in comparison to typical size

18Henceforth, we approximate by(τ ; δ(t)) by by(τ ; δ̄). Figure 2 showed that by(τ ; δ(t)) does not
depend materially on δ(t).
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of jump in yields. Therefore, the variance of the announcement-induced jump in yield

can be well approximated as:

var(∆Jy) ≈ by(τ ; δ̄)′Ωby(τ ; δ̄). (5.2)

Figure 3 plots the term structure of interest rate volatility associated with

employment report jumps (
√
var(∆Jy)), along with the term structure of daily

interest rate volatility without jumps (
√
var(∆Dy)), implied by our estimated J-Full

model. Our model matches the empirical fact, reviewed in Section 2, that these two

volatility term structures are different, and that the jump volatility term structure

has a hump shape. Matching the volatility term structure of yields on announcement

days is important to investors trading bonds and bond derivatives at high frequency

around news releases.

Figure 3 also shows the corresponding results from our J-Short model. In this

model, the jump volatility term structure looks very different from the case where all

three factors are allowed to jump. It does not have a hump shape, and instead slopes

down.19 The model with jumps in the short rate alone implies that employment

report announcements should have little impact on ten-year yields, which we know

to be counterfactual.

Piazzesi (2001) also estimated a term structure model which has jumps in state

variables corresponding to nonfarm payroll employment and CPI at deterministic

times (times of data releases). These jumps affect the yield curve through their effect

on the intensity for the arrival of Poisson jumps that represent discrete changes in

the federal funds target rate. She found that the term structure of the sensitivity

of bond yields to nonfarm payroll surprises in her estimated model is monotonically

19This is because the factor loading for the short rate (the only state variable that has jumps in
the J-Short model), [by(τ ; δ̄)]3, is a monotonically decreasing function of time-to-maturity τ .
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downward sloping (Piazzesi 2001, Figure 8, right panel), as in our J-Short model.

The difference between the J-Full and J-Short models can be seen from the

estimated Ω matrices. We obtain
√

diag(Ω) = [0.00082, 0.00063, 0.00036]′ for the

J-Full model and [0, 0, 0.00054]′ for the J-Short model. Note that the J-Short model

by design has nonzero standard deviation of jump in x3t (short rate) only. On the

other hand, in the J-Full model, the standard deviation of jump in x3t (short rate) is

the smallest of all the state variables.

These results indicate that it is important to allow for jumps in more than just

the short rate.

5.2 News: term premia and expectations

To better understand the sources of yield curve movements that underlie the

hump-shaped volatility term structure pattern discussed above, we decompose the

model-implied term structure of interest rate volatility associated with employment

report jumps and the model-implied term structure of the diffusive component of

daily interest rate volatility into term premium and expected future short rate com-

ponents. This is in particular important to central banks who want to parse interest

rate volatility around news announcements into term premium and rate expectations

components, as discussed in Bauer (2011) and Beechey (2007).

In our model, term premia and expectations component are affine in the state

vector (equations (3.28), and (3.30)); thus, the term premium and expectations

component of the jump in yields at employment report at time Ti can be expressed

as ∆JE ≈ bE ′
y ξTi and ∆JTP ≈ bTP′

y ξTi , respectively.20 Hence, the contribution of

20The factor loadings bEy and bTP
y are implicitly defined as Eτ,t ≡ aEy (τ ; δ̄) + bEy (τ ; δ̄)′xt and

TPτ,t ≡ aTP
y (τ ; δ̄) + bTP

y (τ ; δ̄)′xt.
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expectations and term premium components to the variance are:21

var(∆JE) ≈ bE ′
y ΩbE

y , (5.3)

var(∆JTP) ≈ bTP′
y ΩbTP

y . (5.4)

Likewise, the approximate contributions of the expectations and term premium

components to the diffusive part of daily yield variance can be approximated as:

var(∆DE) ≈ bE ′
y ΣΣ′bE

y ∆t, (5.5)

var(∆DTP) ≈ bTP′
y ΣΣ′bTP

y ∆t. (5.6)

Figure 4 shows
√
var(∆JE),

√
var(∆JTP),

√
var(∆DE) and

√
var(∆DTP) for the

J-Full and J-Short models.

The J-Full model results show an interesting difference between jump volatility

and diffusion volatility: The expectations component of jump volatility first rises with

maturity, peaks around 1-2 years, and then declines. This behavior seems consistent

with the “path shock” intuition: employment reports have a stronger effect on policy

rate expectations a bit further out than very near-term horizons such as the next

few FOMC meeting. In contrast, the expectations component of diffusion volatility

declines monotonically as a function of maturity. It can also be seen that, while

the contribution of the term premium component to the jump volatility is small at

short maturities, it grows with maturity. At maturities of about three years and

above, it exceeds the expectations component contribution. In other words, the term

premium shock is an important contributor to the yield response to employment

reports, especially at longer maturities.

In the J-Short model, jump volatility comes mainly from the expectations com-

21Note that these do not add up to var(∆Jy) since expectations and term premium components
are generally correlated, so there is an extra term 2bE′y ΩbTP

y .
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ponent at all maturities, with the term premium component contributing relatively

little. In further contrast to the J-Full model, the contribution of the expectations

component to jump volatility declines monotonically with maturity.

5.3 Bond risk premia

As noted in the Introduction, an important departure from the existing literature on

term structure modeling with announcement effects is that in our model jump risk is

priced. In Section 3, we discussed theoretical implication of this for bond risk premia.

Here we explore the quantitative implications based on our estimated models.

Using daily filtered state variables, Figure 5a plots annualized bond risk premia for

a one-day holding period (equation (3.24) with h = 1 day = 1/250) for ten-year bonds

for the J-Full model and the No-Jump model. For a closer look, Figure 5b shows the

same plot with a magnified y-axis. It can be seen from Figures 5a,b that expected

excess returns for the No-Jump model vary slowly over time, being positive for most

of the 1990s and around 2005, but negative in the early 2000s.22 Incorporating jumps

makes the expected excess returns much larger in absolute magnitude on employment

report days, as can be seen from sharp spikes on these days. These spikes originate

from the discontinuity in b(t, ·) in equation (3.24) at jump dates. Equation (3.27)

also gives a clear explanation for these spikes. It can be also seen from Figures 5a,b

that the average level of spikes moves in ways similar to the expected excess returns

on non-announcement days, albeit with a different scale. Furthermore, the expected

excess returns on non-employment report days are smaller in absolute value than

the expected excess return from the homogeneous (No-Jump) model. These results

indicate that part of the bond risk premium is earned on employment report days as

22Interestingly, Campbell, Sunderam, and Viceira (2009) have stressed that the CAPM beta of
bonds have been generally negative in 2000s.

23



compensation for jump risk. This is consistent with Faust and Wright (2008) who do

not estimate a term structure model, but who do find that bond excess returns on

days of macroeconomic news announcements are predictable.

Figure 5c shows the corresponding plot of one-day expected excess returns based

on the J-Short model. The pattern of expected excess returns from this model does

not have the aforementioned properties associated with Figures 5a and 5b (J-Full).

Although the J-Short model still allows for jumps in the pricing kernel (short-rate

jump risk is still priced), this is not sufficient to produce the kind of jump risk premia

variation that we saw in the J-Full model.

While the spikes in Figure 5 may appear large in magnitude, this is a consequence

of the fact that we are measuring annualized risk premia with a jump in a short

holding period [t, t + h]. Recall from Section 3.3 that annualized bond risk premia

for short holding periods can be well approximated by equation (3.27), with diffusion

component %Dt and jump component (1/h)%Jt . As h→ 0 (while [t, t+ h] still contains

jump event), |ρτ,t,h| → ∞, due to the factor 1/h. The expected return at jumps, %Jt ,

are not extremely large in magnitude: for example, a spike of typical size, say 0.25,

in Figure 5a corresponds to 0.25h = 0.25/250 = 0.001 = 0.1% expected change in

bond price. Another angle by which to look at the magnitudes of jump risk premia

is through Sharpe ratios, to which we return below.

Table 4 shows the correlation between %Dt and %Jt implied by our estimated models

and daily filtered state variables, for two- and ten-year bonds.23 It also shows the

correlation of daily changes in %Dt and %Jt . It can be seen that in the case of the J-Full

model, both the level and difference correlations are positive. This corroborates the

visual impression from Figure 5 that bond risk premia associated with jumps move

23Although the jump component is nonzero only on employment report days, we can think of
there being an underlying process, and examine how it is related to the diffusion component

24



in ways that are similar to bond risk premia associated with diffusions. On the

other hand, the J-Short model produces a negative correlation between jump and

diffusion contributions, underscoring the fact that the model with jumps in the short

rate alone is too restrictive to produce realistic variation in bond risk premia. The

positive relationship between the diffusion and jump components of bond risk premia

observed in the J-Full model is consistent with findings in Balduzzi and Moneta

(2012), who report that a single factor can capture much of predictable returns

to macro announcements, including employment report and other announcements:

The positive relationship between the diffusion and jump components may be partly

reflecting this structure, since responses to announcements other than employment

reports are treated as part of diffusion in our implementation.

Next, we compare the monthly average of one-day expected excess returns for the

J-Full model with the No-Jump model.24 As can be seen in Figure 6, the monthly

averaging removes the spike patterns seen earlier, and produces bond risk premia that

are similar to the those of the homogeneous (No-Jump) model. This is especially so

for relatively short maturity bonds such as the 2-year (Figure 6a), but even for longer

maturity bonds, such as the 10-year (Figure 6b), monthly averages from the two

models are quite close. This implies that the homogeneous model can be viewed as a

rough approximation of more granular models (such as the J-Full model) for longer

holding periods (such as a month).

We can decompose the bond risk premia for a one-month holding period for month

t approximately as:

ρτ,t,1/12 ≈ %DM(t; τ) + 12%JM(t; τ) (5.7)

24This monthly average of one-day expected excess returns is approximately equal to the
one-month holding period bond risk premia based on the state vector right before the beginning
of that month, as state variables have half-lives that are greater than a month. Note that, due to
the monthly frequency of employment reports, one month is the shortest interval over which we can
expect to see relatively smooth behavior of bond risk premia.
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where %DM(t; τ) is the average of expected daily excess bond returns for month t based

on the filtered state variables right before month t, and %JM(t; τ) is also computed with

filtered state variables right before month t (the employment report being close to the

start of the month).25 This allows us to assess how much jump risk premia contribute

to predictability in one-month expected excess returns. Figure 7 plots the jump and

diffusion contributions to one-month holding period bond risk premia, based on the

J-Full model, for two- and ten-year maturities. Not surprisingly, %DM(t) + 12%JM(t) in

Figure 7 agrees fairly well with monthly averages of daily bond risk premia in Figure

6. At the two-year maturity, the jump risk premium contributes relatively little

to the one-month holding period bond risk premium. However, at the ten-year

maturity, the jump risk premium contributes substantially to the variability of the

one-month holding period bond risk premium. For ten-year bonds (and to a lesser

extent for two-year bonds), the jump and diffusive components have a visible positive

correlation, consistent with our earlier findings in Table 4.

It is also of interest to examine the annualized Sharpe ratios corresponding to the

following three trading strategies:

i Strategy (“τ -J”) of investing (i.e., taking a long position) in a τ -year bond only

over a short interval surrounding the employment report:
√

12
%JM (t)√
b′Ωb

,

ii Strategy (“τ -D”) of investing in a τ -year bond every day of the month, except

for the day containing the employment report:
%DM (t)√
b′ΣΣ′b

, and

iii Strategy (“τ -all”) of investing in a τ -year bond every day of the month:

%DM (t)+12%JM (t)√
b′ΣΣ′b+12b′Ωb

.

Table 5 shows the mean, standard deviation, minimum, and maximum of these Sharpe

ratios for these strategies implied by the J-Full model over our sample period. The

25We henceforth suppress the dependence of %DM and %JM on τ .
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means of the τ -J strategy are modestly negative for both τ = 2-year and 10-year,

reflecting the frequent occurrences of negative jump risk premia during the 2000s as

was seen in Figure 7,26 while the means for τ -D and τ -all strategies are modestly

positive. The τ -J Sharpe ratios have substantial variability, especially for ten-year

bonds; the ten–year τ -J Sharpe ratios range between -2.0 and 1.6 in our sample

period. That said, these magnitudes are not too large relative to some of the

annualized Sharpe ratios mentioned in other asset markets or trading strategies, such

as algorithmic trading.

Lastly, and in the same spirit as Figure 6, we compared the term premia,

(hold-to-maturity bond risk premia, as in equation (3.28)) implied by J-Full and

No-Jump models, for two-year and ten-year maturities. The two models’ term

premium estimates are very similar, especially at the two-year maturity, for the same

reasons as discussed in relation to Figure 6, but are not shown, so as to conserve

space.

6 Conclusion

Through the prism of a term structure model with deterministic jumps, in this paper

we have explored the implications of the presence of influential scheduled data release

events (employment reports). While the model could be extended and refined further,

the key insights from the present model are expected to be robust. We find that “path

shocks”—innovations that shift the future expected path of the short rate, and “term

premium shocks”—innovations that shift the term premium component of yields,

are both important contributors to jumps in bond yields at these events. We also

find that deterministic jumps lead to a behavior of bond risk premia for short holding

26Since our model does not have time-varying volatility, the time series of Sharpe ratios are
proportional to expected excess returns.
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periods that is notably different from the predictions of standard (time-homogeneous)

models. Nonetheless, the behavior of bond risk premia for longer holding periods and

term permia (hold-to-maturity risk premia) can be reasonably well approximated with

time-homogeneous models.

Appendix: Proofs of Propositions

Proof of Proposition 1

Using the Feynman-Kac formula, for any interval [t, u] that doesn’t include any jump

event, we have:

EQ
t (e−

∫ u
t rsds+η′xu) = exp(A(u− t; η) +B(u− t; η)′xt) (A.1)

where B(τ ; η) and A(τ ; η) are given by equations (3.15) and (3.16).

Between time t and T there are p jumps at T1, T2, ..., Tp. Consider P (Ti, T ) and

P (Ti−, T ), where by Ti we mean Ti + 0+, and by Ti− we mean Ti − 0+. Using the

law of iterated expectations, we have:

P (Ti−, T ) = EQ
Ti−(e−

∫ Ti
Ti−

rsdsEQ
Ti

(e
−

∫ T
Ti
rsds)) = EQ

Ti−(P (Ti, T )). (A.2)

We know from equation (A.1) that at the time of the last jump:

P (Tp, T ) = exp(ap + b′pxTp).

where ap = A(T −Tp; 0) and bp = B(T −Tp; 0). Suppose that P (Ti, T ) is of the form:

P (Ti, T ) = exp(ai + b′ixTi). (A.3)
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From this, and equation (A.2), we have:

P (Ti−, T ) = EQ
Ti−(eai+b

′
i(xTi−+ξTi )) (A.4)

= eai+b
′
ixTi−+b′i(γQ+ΓQxTi−)+ 1

2
b′iΩbi

= eai+b
′
iγQ+ 1

2
b′iΩbi+[(I+Γ′Q)bi]

′xTi− ,

where we have used the fact that the jump vector is normally distributed. For the

bond price at the time of jump i− 1, we have:

P (Ti−1, T ) = EQ
Ti−1

(e
−

∫ Ti−
Ti−1

rsdsP (Ti−, T ))

= eai+b
′
iγQ+ 1

2
b′iΩbiEQ

Ti−1
[e
−

∫ Ti−
Ti−1

rsds+[(I+Γ′Q)bi]
′xTi− ],

= eai+b
′
iγQ+ 1

2
b′iΩbieA(Ti−Ti−1;(I+Γ′Q)bi)+B(Ti−Ti−1;(I+Γ′Q)bi)

′xTi−

where we have used equation (A.1) and the fact that there are no jumps between Ti−1

and Ti in the last step. This means that P (Ti−1, T ) = eai−1+b′i−1xTi−1where

ai−1 = ai + b′iγQ +
1

2
b′iΩbi + A(Ti − Ti−1; (I + Γ′Q)bi)

bi−1 = B(Ti − Ti−1; (I + Γ′Q)bi).

We have thus proved equation (A.3) by induction over i = p, p− 1, p− 2, ...1, where

{ai} and {bi} are given by the recursions in equations (3.11)-(3.14). For the bond

price at time t, we have:

P (t, T ) = EQ
t (e−

∫ T1−
t rsdsP (T1−, T )).

This yields equation (3.8) and completes the proof of the proposition.
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Derivation of bond prices in the ΓQ = 0n×n case

In this part of the appendix, we derive equations (3.17) and (3.18), that apply just in

the case where ΓQ = 0. Let ã(t, T ) and b̃(t, T ) denote the values of a(t, T ) and b(t, T )

without any deterministic jumps (γQ = 0, Ω = 0 and ΓQ = 0). The familiar affine

Gaussian bond pricing equation, without deterministic jumps, takes the form:

P (t, T ) = eã(T−t)+b̃(T−t)′xt .

Next consider the case where there are jumps, but there is no state dependence

(ΓQ = 0). Because b(t, T ) does not depend anywhere on γQ or Ω, b(t, T ) = b̃(t, T ),

proving (3.18).

From (3.12), (3.14) and (3.15), we can write

bi = −[I − exp(−K ′Q(T − Ti))]K ′−1
Q ρ.

From (3.10) and (3.11),

a(t, T ) = Σp
j=1[b′jγQ +

1

2
b′jΩbj] + ã(t, T )

= ã(t, T )− Σp
j=1ρ

′K−1
Q [I − exp(−K ′Q(T − Ti))]γQ

+
1

2
ρ′K−1

Q [I − exp(−K ′Q(T − Ti))]Ω[I − exp(−K ′Q(T − Ti))]K ′−1
Q ρ,

proving (3.17).

30



Proof of Proposition 2

To prove equation (3.21), it is sufficient to show that

∂

∂ε
b(t, Ti + ε)

∣∣∣∣
ε=0

6= − ∂

∂ε
b(t, Ti − ε)

∣∣∣∣
ε=0

. (A.5)

We show this for Ti = T1 (nearest jump date). Since there is no jump between t and

T1, we have

b(t, T1 − ε) = B(T1 − ε− t; 0), (A.6)

where we have used equation (A.1). For b(t, Ti + ε), note that

P (t, T1 + ε) = EQ
t (e−

∫ T1−
t rsdsP (T1, T1 + ε))=EQ

t (e−
∫ T1−
t rsdsEQ

T1−(eA(ε;0)+B(ε;0)′xT1 ))

= EQ
t (e−

∫ T1−
t rsdseA(ε;0)+B(ε;0)′(I+ΓQ)xT1−+ 1

2
B(ε;0)′ΩB(ε;0)). (A.7)

Therefore

b(t, T1 + ε) = B(T1 − t; (I + ΓQ)′B(ε; 0)). (A.8)

Expanding equations (A.6) and (A.8) in powers of ε, we have (using equation (3.15)),

b(t, T1 − ε) = B(T1 − t; 0) + e−K
′
Q(T1−t)ρε+O(ε2) (A.9)

b(t, T1 + ε) = B(T1 − t; 0)− e−K′Q(T1−t)(I + Γ′Q)ρε+O(ε2). (A.10)

Therefore, equation (A.5) holds for i = 1, unless ΓQ = 0. The demonstration of

equation (A.5) for i > 1 is straightforward using the law of iterated expectations

P (t, Ti ± ε) = EQ
t (e−

∫ Ti−1
t rsdsP (Ti−1, Ti ± ε)).

That shows equation (3.21) for the case ΓQ 6= 0. To complete the proof of

Proposition 2, we must show equation (3.21) in the ΓQ = 0 case. In this case,
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the first derivative of b(t, T ) is continuous at Ti. However, from equation (3.17):

a(t, Ti + ε) = a(t, Ti − ε) + ã(t, Ti + ε)− ã(t, Ti − ε)

+1(ε > 0)

(
−ρ′K−1

Q (I−e−KQε)γQ +
1

2
ρ′K−1

Q (I − e−KQε)Ω(I − e−K′Qε)K ′−1
Q ρ

)
.

The term 1(ε > 0)(·) has a nonzero derivative with respect to ε, so the first derivative

of a(t, T ) is discontinuous at Ti. Hence there is again a kink, and equation (3.21)

holds.
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Table 1: Standard Deviation of Yield Changes on Announcement Days

Three-month Two-year Ten-year

Nonfarm payrolls 6.0∗ 10.1∗∗∗ 8.9∗∗∗

Durable Goods 4.7 6.3∗∗∗ 5.8

Retail Sales 4.0∗∗ 6.9∗∗∗ 7.0∗∗∗

PPI 3.8∗ 6.0 5.9

FOMC 5.9 6.7∗∗ 5.4

GDP 5.0 6.3∗∗∗ 6.3∗∗∗

CPI 6.1 6.8∗∗∗ 6.5∗∗

None 4.9 5.1 5.3

Notes: This table shows the standard deviation of three-month, two-year and
ten-year zero-coupon yield changes (in basis points) on days of selected announce-
ments, and on days of no announcements. For each type of announcement, cases
in which the volatility is significantly different on that type of announcement day
relative to non-announcement days at the 10, 5 and 1 percent significance level are
marked with one, two and three asterisks, respectively. Newey-West standard errors
are used. The sample period is January 1990 to December 2007.
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Table 2: One Day Options Implied Volatilities on Thursdays

Employment Other t-stat

Reports Days

Five year 0.36 0.20 10.56

Ten-year 0.60 0.33 11.21

Thirty-year 0.96 0.57 8.14

Notes: This table reports the average one-day volatilities implied by options on
five-, ten- and thirty-year Treasury futures as of the day before employment report
releases and all other Thursdays. Implied volatilities are in percentage points in price
terms; dividing by duration of the cheapest-to-deliver gives the approximate implied
volatility in yield terms. In the final column, the t statistic tests the hypothesis that
the implied volatilities are equal on employment report and other days. The sample
period is February 2011 to February 2015.
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Table 3: Parameter estimates
J-Full J-Short No-Jump

K11 0.0102 (0.0222) 0.0241 (0.0265) 0.0170 (0.0260)
K21 -0.1463 (0.3120) -0.8381 (0.4502) -0.2318 (0.2605)
K31 -0.1173 (0.3216) 0.6595 (0.4261) -0.0294 (0.2956)
K22 2.2006 (0.5740) 3.2498 (0.4670) 1.6373 (0.6506)
K32 -2.3023 (0.4078) -3.1530 (0.3993) -1.9081 (0.4177)
K33 0.6764 (0.2035) 0.3504 (0.0338) 0.6713 (0.2660)
Σ31 0.0022 (0.0010) 0.0019 (0.0007) 0.0012 (0.0011)
Σ32 -0.0051 (0.0006) -0.0056 (0.0003) -0.0043 (0.0011)
Σ33 -0.0064 (0.0004) -0.0061 (0.0001) -0.0073 (0.0006)
ρ0 0.0171 (0.0357) 0.0120 (0.0279) 0.0187 (0.0283)
λ1 0.0635 (1.2979) -0.9730 (0.5646) -0.3967 (0.7636)
λ2 -1.0458 (1.7400) -1.0731 (1.5471) 0.1693 (0.8939)
λ3 -4.9772 (6.9200) -6.1942 (5.5682) -5.4023 (6.1607)
[ΣΛ]11 -0.1703 (0.2160) 0.1244 (0.0694) -0.0024 (0.1606)
[ΣΛ]21 0.3357 (0.1682) 0.5048 (0.2575) 0.1762 (0.1965)
[ΣΛ]31 -0.7580 (0.1884) -0.4027 (0.1804) -0.7933 (0.1834)
[ΣΛ]12 -0.3564 (0.4816) -0.2089 (0.2469) -0.0960 (0.4632)
[ΣΛ]22 -0.6992 (0.3483) -1.3224 (0.4230) -0.5947 (0.2552)
[ΣΛ]32 -0.7048 (0.3460) -0.5794 (0.3664) -0.9205 (0.2854)
[ΣΛ]13 0.2796 (0.3003) -0.0426 (0.0174) 0.0445 (0.2148)
[ΣΛ]23 -0.2888 (0.1259) 0.1022 (0.0603) -0.1466 (0.0155)
[ΣΛ]33 0.5355 (0.3151) -0.2088 (0.1102) 0.4724 (0.3826)
γQ1 -0.0006 (0.0009)
γQ2 -0.0007 (0.0008)
γQ3 -0.0003 (0.0005) -0.0005 (0.0005)
ΓQ11 0.0071 (0.0104)
ΓQ21 0.0109 (0.0072)
ΓQ31 0.0023 (0.0059) 0.0109 (0.0055)
ΓQ12 0.0228 (0.0166)
ΓQ22 0.0149 (0.0136)
ΓQ32 -0.0245 (0.0102) -0.0232 (0.0091)
ΓQ13 -0.0046 (0.0098)
ΓQ23 -0.0124 (0.0069)
ΓQ33 0.0079 (0.0058) 0.0011 (0.0031)
Υ11 0.0008 (0.0001)
Υ21 0.0005 (0.0001)
Υ31 0.0001 (0.0001)
Υ22 0.0004 (0.0001)
Υ32 0.0001 (0.0002)
Υ33 -0.0004 (0.0001) 0.0005 (0.0000)

Notes: Parameter estimates for the J-Full, J-Short, and No-Jump models. Stan-
dard errors are given in parenthesis. We impose the following normalization restric-
tions: K12 = K13 = K23 = 0, Σ11 = Σ22 = 0.01, Σ12 = Σ21 = Σ13 = Σ23 = 0,
ρ = [0, 0, 1]′, θ = [0, 0, 0]′, Υ12 = Υ13 = Υ23 = 0. In addition, for tractability we set
γ = [0, 0, 0]′, and Γ = 03×3.
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Table 4: Correlation of jump and diffusion components of bond risk
premia

Two-year Ten-year
J-Full cov(%D, %J) 0.61 0.57

(0.04) (0.04)

cov(∆%D,∆%J) 0.90 0.96
(0.02) (0.02)

J-Short cov(%D, %J) -0.74 -0.87
(0.03) (0.02)

cov(∆%D,∆%J) -0.96 -0.98
(0.02) (0.02)

Notes: This table shows the simple correlation of the diffusion and jump com-
ponents of bond risk premia (%D ≡ b(t, T )′Σ(λ + Λxt) and %J ≡ b(t, T )′Υ(ψ + Ψxt))
based on estimated parameters and state variables (daily series). The ∆ operator de-
notes daily changes. Standard errors are in parentheses, computed using the Bartlett
formula with 8 lags.

Table 5: Summary statistics for Sharpe ratios

2Y-J 2Y-D 2Y-all 10Y-J 10Y-D 10Y-all
mean -0.18 0.30 0.22 -0.31 0.40 0.29
s.d. 0.59 0.74 0.83 0.74 0.24 0.40
min -1.53 -1.50 -1.81 -2.10 -0.13 -0.63
max 1.15 2.04 2.31 1.61 0.92 1.25

Notes: This table shows summary statistics for the time series of annualized Sharpe
ratios implied by the estimated J-Full model for the following trading strategies: “τ -J”
is the strategy of taking long position in τ -year bond only over a short interval nesting
the employment report (financed by borrowing at the riskless rate rt); “τ -D” is the
strategy of taking long position in τ -year bond, except for a short interval nesting the
employment report; “τ -all” is the strategy of taking long position in τ -year bond at
all times.
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Figure 1: Volatility of Yield Changes
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Note: This figure plots the standard deviation of daily changes in US Treasury zero-coupon yields
on days of employment report releases and on non-announcement days against the bond maturity. The
sample period is January 1990 to December 2007.
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Figure 2: Estimated by factor loadings
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Note: This figure plots the three elements of the estimated by vector as a function of
time-to-maturity τ , for the J-Full model (left panel) and the J-short model (right panel). The solid
and dashed lines denote by(·; 0) and by(·; δ̄), respectively.
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Figure 3: Model-implied term structure of volatility
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Note: This figure plots the model-implied term structure of interest rate volatility associated with
employment report jumps (equation (5.2)), along with the model-implied term structure of the diffusion
component of daily interest rate volatility (equation (5.1)). Results are shown both for the model with
jumps in all state variables and the model with jumps in the short rate alone.
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Figure 4: Model-implied term structure of volatility:
expectations and term premium
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Note: This figure plots the term structures of the expectations (exp) and term premium (TP)
components of jump and diffusion volatility (equations (5.3)-(5.6)) in both the J-Full and J-short models.
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Figure 5: One day expected excess return on ten-year bond
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Note: This figure plots the one day holding period ex ante expected excess returns on holding a
ten-year bond over a one-day bond (equation (3.24)). Panels (a) and (b) show the results for the J-Full
and No-Jump (homogeneous) models, and Panel (c) shows the results for the J-Short and No-Jump
models. Units are annualized returns.
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Figure 6: Monthly average of one-day expected excess return on ten-year
bond
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Note: This figure plots the monthly average of one-day expected excess returns from the J-Full
model and the No-Jump model for two- and ten-year bonds. Units are annualized returns.
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Figure 7: Decomposition of the one-month holding period bond risk
premia into jump and diffusion components
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Note: This figure plots the decomposition of the one-month holding period bond risk premia into
jump and diffusion components, based on the J-Full model, for two- and ten-year bonds. Units are
annualized returns.
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